Assessing land use/cover change impacts on carbon sequestration under various climate scenarios in China – Preliminary Results

Jiaguo Qi (qi@msu.edu), Center for Global Change and Earth Observations, Michigan State University;
Jyuan Liu, Institutes of Geographic Science and Natural Resources, Chinese Academy of Science, China;
Shuguang Liu, Chongsheng Li, Joe Messina, Mark Cochrane, Shuming Bao, Shuang Wu, Jiaping Wu, Lijun Shao, Peng Gong, Xingming Xiao, William Salas, Guoping Sun, Wei Ge, Cuicheng Wang, Ling Yao, Wencheng Zheng, Genren Liu, Ya-Du Jin, Guoping Lei, Yongyuan Yin, Runsheng Yin, Zhiquang Ge, Da Liu, Shulan Liu, Xueling Pan, Lin Zheng, Jorden Feng, Luyen Tang, Zhigang Li

Introduction

- Significant changes in land use and land cover over the past two decades in China
- Environmental consequences are generally negative
- Carbon stocks and sequestration is largely unknown (uncertainty is high)
- There is a need to quantify the impacts of LULCC on carbon and assess the future change (trend)

Objectives

- Assess the trend carbon sequestration changes due to land use and land cover change
- Discern climate impacts from human induced disturbances on ecosystem productivity
- Assess the future changes in ecosystem productivity under current and future climate variability

Approach

- Characterize land use and land cover change, as input to biogeochemical models (GEMS and DNDC) to assess the impacts on carbon sequestration
- Simulate future climate scenarios using regional climate models (RAMS)
- Run the biogeochemical models under various simulated climate scenarios to investigate the interaction between climate and human disturbance on carbon sequestration

Geospatial Data
- LULC Data
- Census Data
- Climate Data

Biogeochemical Models
- GEMS & DNDC

Validation with remote sensing and field data

Spatial and Temporal Dynamics:
- C Sequestration, N Decomposition

A modeling framework for simulating C and N using geospatial data and biogeochemical models

Results and Discussion

- Significant changes in C sequestration both above and below ground (soil) due to changes in land use and land cover over the past two decades
- Human disturbances are evident and exhibit a spatial patterns unrelated to climate change
- Long term remote sensing observations and statistical analysis showed an interesting patterns of change. Human intervention (such as afforestation or degradation in the dryland areas) can be observed and resulted in an increase in greenness. This increase in greenness did not seem to spatially correspond well with the biogeochemical modeling results, which could be due to uncertainties in either modeling or satellite observations.
- Time series analysis suggested that less productive areas (drylands) in the western part of the country seem to have gone through a major disturbance than productive coastal regions.

Acknowledgement

The project was supported by NASA Land Use Land Cover Program, award no. NNG05GD46G.