Impact of autumn snow cover anomalies on the following winter atmospheric
dynamics estimated from the INMCM4.0 and INMCMS.0 models output
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Introduction

There are different studies of the influence of
autumn snow cover anomalies on atmospheric
dynamics in the following winter (e.g. Allen
R.J. and Zender C.S., 2011; Martynova Yu.V.
and  Krupchatnikov  V.N., 2010). The
mechanism of this effect is complex and
largely affects stratospheric processes (Cohen
J. et al., 2007). The snow cover rapidly
increases exceeding normal values. Emerged
diabatic cooling results in pressure increase
over and temperature decrease under the
normal value. Thus, in troposphere upward
energy flux increases, and then it is absorbed
in stratosphere. Strong convergence of wave
activity flux causes geopotential heights
increase, polar vortex slowdown and
stratospheric temperature increase. Emerged
geopotential and wind anomalies extend from
stratosphere to troposphere up to surface. As
a result, strong negative AO mode appears
near the surface as surface air temperature
increase (Figure 1).
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Figure 1. Mechanism of the influence of autumn snow cover
anomalies on atmospheric dynamics in the following winter (Cohen J.

et al., 2007).
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Siberia plays important role in
this mechanism. Firstly, the
most extensive snow cover is
formed there. Secondly, 35
according to NOAA satellite 30
observations this cover is 2|
generally formed in October 2
(Figure 2) (Gong G. et al.,

2003). As a result, Siberia is 12
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influence on the atmospheric (Dymnikov V.P. et al., 2003).

dynamics in the following
winter.

This study is devoted to detection and estimation of
described mechanism in INMCM4.0 and INMCMJ5.0 data.
INMCM5.0 model represents further development of
INMCMA4.0 model (Volodin E.M. et al., 2010; Volodin E.M.,
2014). They are different both from physical (various
physical processes) and numerical (spatial resolution)
points of view.
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Figure 3. Top down: Snowcover
percent, AO Index and surface
temperature for Deceber, January
and February, and leading mode
of EOF analysis of monthly mean
1000 hPa geopotential height
during 1979-2008(2005) period.

Black line is values over Western
Siberia; red line is values over
Western and Eastern Siberia; bar
charts are AO Index; vertical lines
indicate the snow cover maxima.

g p 8883

Show Cover Percent, [%]

AQ Index, Deo.

Surface Temperature, [K]

AQ Indeyx, Jan,

sp b o prbtbon e

Figure 4. Leading mode of EOF
analysis of monthly mean 1000
hPa geopotential height during
1979-2000 period (NOAA).
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Figure 5.
Geopotential
height latitude
anomaly for a
winter season at
different
pressure levels
was considered.
Outputs of three
different models

were used to
calculate the
anomalies.

These anomalies
were  averaged
over the vyears
with maximum

snow cover (case
1) and over the
whole time
period
(1979-2008/2005
) (case 2).
Differences
between case 1
and case 2
averages are 1000
presented.
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INMCM5.0-R128 Results

1. It wasn't found explicit dependence between positive
anomaly of snow cover in Oktober and both negative AO
mode appearance and surface temperature anomalies in all
considered outputs of models.

2. The sign of the leading mode of EOF analysis of monthly
mean 1000 hPa height during 1979-2005 period wasn't
reproduced correctly in INMCM4.0 dataset (Figure 3.a).
There is opposit situation in INMCMJ5.0 datasets. The sign
is correct but maximum and minimum areas are shifted
clockwise relative to the leading mode obtained by NOAA
(Figure 3.b, 3.c, 4).3. Significant changes of wave activity
(the intensification) in the case of snow anomalies are
present only at altitudes above the boundary layer (above
850 hPa) for all considered datasets. In December, all
models show increased activity only in the stratosphere. In
January, INMCM4.0 and INMCMO5.0-R128 (128 vertical
levels during the simulation) demonstrate the beginning of
wave anomalies propagation down to the troposphere. In
February, all three models show the propagation down
through troposphere.

Conclusion

It has been shown that the mechanism of the effect of
positive snow cover anomalies in October on the
atmospheric dynamics in following winter is not
reproduced fully in all the considered outputs of models. In
particular, it can be seen in the case of negative AO mode
appearence at the surface. One of possible reasons may be
a suppression of wave processes by turbulence in the
boundary layer. However, at this stage of research, this
assumption has not been tested.
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