Changes of snow cover in North Eurasia: tendencies and interaction with climate system

Andrey B. Shmakin,
Valeria V. Popova,
Dmitry V. Turkov

Institute of Geography RAS
Moscow
Each parameter has been determined for each year (depending on availability of the data), and then averaged by two periods (1951-1980 and 1989-2006), significantly different from each other by the average annual air temperature.
Annual number of snow days in North Eurasia averaged for 1951-1980

Change of annual number of snow days in 1989-2006 as compared to 1951-1980
Annual solid precipitation sum (mm) in North Eurasia averaged for 1951-1980

Change of annual solid precipitation (%) in 1989-2006 as compared to 1951-1980
Snow depth in North Eurasia (cm) at the end of February, averaged over 1951-1980. The regions beyond ex-USSR borders are not covered by observed data.

Change of the snow depth (cm) at the end of February in 1989-2006 as compared to 1951-1980. The areas with insignificant change are shown in white.
Maximum annual snow depth in North Eurasia (cm), averaged over 1951-1980. The regions beyond ex-USSR borders are not covered by observed data.

Change of the maximum annual snow depth (cm) in 1989-2006 as compared to 1951-1980. The areas with insignificant change are shown in white.
Snow depth at the time when average daily air temperature exceeds 3°C (cm), averaged over 1951-1980. The regions beyond ex-USSR borders are not covered by observed data.

Change of the snow depth (cm) at the time when average daily air temperature exceeds 3°C in 1989-2006 as compared to 1951-1980. The areas with insignificant change are shown in white.
Role of large-scale atmospheric circulation patterns in the snow depth variability over North Eurasia

Circulation patterns: NAO, PNA, WP, POL, SCAND

Pattern and time series of February snow depth PC1 (17.3%)

1 – PC1, based on observed data
2 – calculated PC1, based on stepwise multiple regression with indices I_{NAO}, I_{SCAND}, I_{PNA}, I_{POL}
Pattern and time series of February snow depth PC2 (7.8%)
Multiple regression on snow depth PC1 and the fractions of the variance in snow depth (R^2) associated with circulation indices for two periods. Numbers in bold are statistically significant (p<0.05).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Error</th>
<th>t-value</th>
<th>p-level</th>
<th>R</th>
<th>R^2 % (accumulated and individual)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951-1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SCND}</td>
<td>-0.51</td>
<td>0.20</td>
<td>-2.50</td>
<td>0.02</td>
<td>0.43</td>
<td>19</td>
</tr>
<tr>
<td>I_{PNA}</td>
<td>0.46</td>
<td>0.22</td>
<td>2.10</td>
<td>0.05</td>
<td>0.57</td>
<td>33</td>
</tr>
<tr>
<td>1975-2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I'_{NAO}</td>
<td>0.43</td>
<td>0.15</td>
<td>2.84</td>
<td>0.01</td>
<td>0.63</td>
<td>39</td>
</tr>
<tr>
<td>I_{SCND}</td>
<td>0.31</td>
<td>0.22</td>
<td>-1.41</td>
<td>0.17</td>
<td>0.65</td>
<td>43</td>
</tr>
<tr>
<td>I_{PNA}</td>
<td>0.22</td>
<td>0.19</td>
<td>1.20</td>
<td>0.24</td>
<td>0.68</td>
<td>46</td>
</tr>
</tbody>
</table>

Circulation patterns can change their relative role in variations
Experiments with the atmospheric general circulation model

Change of snow mass in March (%) under scenario of ice-free ocean to the south from 76°N (top) and 80°N (bottom) as compared to baseline experiment. Changes over Greenland are not shown.
Change of snow mass in March (%) under scenario of artificially decreased (by 25%) cloudiness over East European Plain as compared to baseline experiment. Due to regional cooling, meridional circulation evolves, which results in positive snow mass anomalies in the south-west of the region.
Change of sea level pressure (mB) in May after positive anomaly of the snow mass by 36% in the beginning of March

Change of zonal wind velocity (m/s) in May after positive anomaly of the snow mass by 36% in the beginning of March
Local snow cover model combined with SPONSOR LSM
Density of each snow layer is evaluated, taking into account its seasonal evolution. This, in turn, determines its heat balance (through heat conductivity) and, for the top layer – radiation absorption.

- each snow layer appears after a snowfall;
- snow physical properties change according to meteorological conditions and previous evolution of the snow layers according to certain criteria (Kominami et al., 1998; Pomeroy et al., 1998; Golubev, personal communication; and others);
- snow layers are united once their properties are close enough.
3. Testing the model against 18-year time series at Valdai, Russia

Location of Valdai site, Usadievski catchment

Usadievsky catchment

- surface area: 0.36 km²
- vegetation: grass, sparse bush
Snow at Usadievsky in 1967 – 1972 (top) and 1977 – 1982 (bottom)

- **SWE obs**
- **SWE, rain=1.5°C**
- **SWE, rain=0°C**

The graphs show the snow depth over time for the years specified, with different lines representing various conditions or measurements.
Testing of the model by the snow depth (e.g. by the density evaluation)

1966-1971
observed (1); rain=1.5°C; $\alpha = 0.9$ and 0.55 (2), rain=0°C; $\alpha = 0.9$ and 0.55 (3), rain=1.0°C; $\alpha = 0.8$ and 0.4 (4)

1971-1976
1976-1983

observed (1);

rain=1.5°C; \(\alpha = 0.9 \) and 0.55 (2),

rain=0°C; \(\alpha = 0.9 \) and 0.55 (3),

rain=1.0°C; \(\alpha = 0.8 \) and 0.4 (4)
Conclusions

1. Solid precipitation and snow mass are increasing during last decades over most of North Eurasia; their decrease take place in the south-west of the subcontinent and few other areas. Snow season length does not change significantly, except for its shortening in the west of the East European plain.

2. Spatial and temporal variations of the snow depth on continental scale are well related to key large-scale circulation patterns. Positive phase of NAO (and enhanced westerlies) is a major factor for positive trend of both temperature and snow accumulation since 1970s. Circulation patterns can change their relative role in the influence on climate anomalies.
3. Experiments with atmospheric general circulation model imply existence of various mechanisms of snow dependence on climate and vice versa. Regional snow mass anomalies can result from air temperature anomalies, providing intensive circulation.

4. On local scale, numerous meteorological and heat/water balance processes influence the snow cover seasonal evolution. Main of them are snowfall intensity, radiation absorption, heat transfer and phase changes. Feedbacks in the snow evolution can influence the heat transfer and other processes.
Thank you!

Snow in the Sayan mountains,
South Siberia, June 2008