Main factors of climate variability and their application for environment protection problems in Siberia

Vladimir Penenko & Elena Tsvetova

Institute of Computational Mathematics and Mathematical Geophysics SD RAS
Novosibirsk
Algorithms
for revealing climatic variability

- Singular vectors (SV) for forward tangent operator of dynamical models and the use of SV-decomposition for scenario construction and errors analysis (uncertainty reducing);
- ensembles of prognostic scenarios with generation of perturbations (“breeding cycle”, Lyapunov’s vectors);
- Monte-Carlo methods for scenario construction
- Stochastic-dynamic moment equations and Liouville equations
 ICMMG technology
- Orthogonal decomposition of the phase spaces of non-linear dynamical systems for formation of informative basis subspaces;
- Minimization of uncertainties with respect to given criteria of prognosis quality (+ data assimilation if any)
Scenarios construction
and adaptive monitoring with SV

\[\frac{\partial \phi}{\partial t} + A(\phi) = 0 \Rightarrow \]
Tangent linearization about \(\tilde{\phi}(x,t) \)

\[\frac{\partial \delta \phi}{\partial t} + A_L \delta \phi = 0 \quad \delta \phi(x,0) = (a\ priori) \]

\(\delta \phi(x,t) = L \delta \phi(x,0), \tilde{x} \in D, t \in [0, \bar{t}] \)

\(L(x,t) \) - forward tangent propagator about \(\tilde{\phi}(x,t) \)

\[\psi(x,0)|_D = L^* [\delta \phi(x,t)]_{\Sigma_t}, t \in [\bar{t} \rightarrow 0] \]
Basic relations and patterns for SVs

\[\|\delta \varphi(t)\|_{\Sigma_t} = (\delta \varphi(t), \delta \varphi(t)) = \]
\[= (L \delta \varphi(0), L \delta \varphi(0)) = (\delta \varphi(0), L^* L \delta \varphi(0)) = \]
\[= (\delta \varphi(0), \psi(0)) \]

\[\sum_{t \in D} \text{evaluation domain at } t = \bar{t} \]
\[\sum_{0 \in D} \text{target area at } t=0 \]
\[[0, \bar{t}] \text{ “optimal” time interval } (\leq 48 \text{ h}) \]
Partial eigenproblem for SVs

\[L^*LV_i = \sigma_i^2 V_i, \quad (i \in K) \]

\(\sigma_i, V_i \) singular values and vectors of L (SEVs, SVs)

- Lanzosh algorithm
- Orthogonal decomposition of perturbation spaces
- Optimal construction of perturbations with respect to rapidly growing SVs
Structuring and decomposition of data bases

Initial data base \[\Phi \equiv \{ \varphi(\tilde{x},t,\tilde{Y}) \in Q(D_t) \subset R_N, \tilde{Y} \in R(D_t) \} \]

Structured data base \[Z = \{ z_i = C^{1/2} \varphi_i, \ i = 1, n, \ \varphi_i \in R_N \} \]

\[Z \quad n \times N \] matrix of vectors from \(R_n \times R_N \)

\[C \quad N \times N \] diagonal matrix of total energy weight of \(\varphi \)

Scattering function \[S(v) = (v^T Z^T Z v) = (v^T \Gamma v) \]
Orthogonal decomposition of \(Z \) on the base of optimal properties of \(S(\nu) \)

\[
\begin{align*}
\Gamma \nu = \lambda \nu &\Rightarrow \{ \lambda_p, \nu_p \in R_n \}, \quad \Psi_p \in R_N \\
\nu_p^T \nu_q = \lambda_p \delta_{pq}, \quad \Psi_p^T \Psi_q = \delta_{pq}, \quad p, q = 1, n
\end{align*}
\]

\[
\begin{aligned}
V &= \{ \nu_p \} \\
\Lambda &= \text{diag}\{ \lambda_p > 0 \} \\
\Psi &= \{ \Psi_p \in R_N, \quad p = 1, n \}, \quad n \times N \text{ matrix}
\end{aligned}
\]

\[\Psi \equiv Z \Lambda^{-1} \quad \text{decomposition algorithm}\]

\[\tilde{Z} = \Psi V^T \quad \text{reconstruction algorithm}\]
Factor subspaces
for deterministic- stochastic scenarios

• Factor spaces

\[\mathbf{r} = \mathbf{X}_0 + \mathbf{x} \]

is a linear subset of the vector space \(X \) \(\mathbf{DATA} \)

\(\mathbf{x} \) is arbitrary element from \(X \)

!! Algebraic operations in \(X \) leave \(\mathbf{X}_0 \) invariant
\(\mathbf{X}_0 \) is the leading phase space,
\(\mathbf{x} \) are generated perturbations
Construction of the vector set \(X_0 \)

\[
X_0 = \sum_{i=1}^{n_d} c_i Y_i, \quad n_d \leq n, \quad 0 \leq c_i \leq \max |s| \quad \forall j
\]

Formation of vectors \(X \)

1. Deterministic case:
 calculation by means of the process models
2. Deterministic-stochastic case:
 \(c_i \) generation by means of the stochastic processes
 of the fractal type described by gaussian process with variance
 \[
 \sigma_q^2 = \lambda_q^{2H}, \quad 0 \leq H \leq 1
 \]
 \(H \) is a parameter of the fractal size,
 \(l_q \) are the eigenvalues of the Gram matrix
Forming the guiding phase space with allowance for observation data on the subdomain

\[Z^m(x, \tau) \] measured data; \(\Psi_p(x, t) \) basis

\[Z(x, t) = \sum_{p=1}^{n_a} a^m_p \Psi_p(x, t), \ (x, t) \in D_t, \ n_a \leq n \]

\[
\min_{\{a^m_p\}} \left\| Z^m(x, \tau) - \sum_{p=1}^{n_a} a^m_p \Psi_p(x, \tau) \right\|^2_{D^m_{\tau}} \]

\[\mathbf{a} = \left(\Gamma^m \right)^{-1} \mathbf{F}^m \]

\[\mathbf{a} = \{ a^m_p, \ p = 1, \ldots, n_a \} \]

\[\Gamma^m = \left\{ \Gamma^m_{pq} = \left(\Psi_p, W^m \Psi_q \right)_{D^m_{\tau}}, \ p, q = 1, \ldots, n_a \right\} \]

\[\mathbf{F}^m = \sum_{p=1}^{n_a} \left(\Psi_p, W^m Z^m \right)_{D^m_{\tau}} \]

If \(\tau < t \) then \(Z(x, t) \) is forecast!
Winter pattern of the global 500-hPa geopotential height (the 1st main factor) 1950-2005

January 15

Level value:
-0.85 -0.71 -0.56 -0.42 -0.28 -0.13 0.01 0.16 0.30 0.45 0.59
Winter pattern of global circulation (the 1st main factor) 1950-2005
Summer pattern of the global 500-hPa geopotential height (the 1st main factor) 1950-2005

July 15
Summer pattern of global circulation (the 1st main factor) 1950-2005
East Siberia Region

90-140 E, 45-65 N

June 1950-2005
Variability of the phase spaces with respect to the first main factors

Eigenvectors N1, June, 1950-2005

Global, 17%

Eastern Siberia, 17,9%
Quantification of subspace scales

Eigenvalues of Gram matrices, June, 500-hPa, 1950-2005

Global scale

Regional scale
Monthly risk functions for Lake Baikal

July

December
Conclusion

• The set of numerical algorithms for orthogonal decomposition of the phase spaces of dynamical system evolution is developed for climate and ecology studies.

• The methods are applied for construction of long-term scenarios for risk assessment with respect to anthropogenic impact.

• This allows us to take into account climatic data for environmental studies of global and regional scale.
Acknowledgements

The work is supported by
• RFBR
 Grant 07-05-00673
• Presidium of the Russian Academy of Sciences
 Program 16
• Department of Mathematical Science of RAS
 Program 1.3.