Global semi-Lagrangian atmospheric GCM oriented towards simulation of the atmospheric circulation on time scales from 1 to 120 days

M.A. Tolstykh
Institute of Numerical Mathematics RAS, and
Hydrometcentre of Russia
Outline

• Medium-range forecasts (1-10 days)
• Seasonal forecasts (30-120 days)
• Strategy for development of the next generation high-resolution dynamical core
SL-AV model

• Dynamical core of own development (vorticity-divergence formulation on the unstaggered grid; 4th order finite differences). Validated in Held-Suarez test (3yr integration)

• Subgrid-scale parameterizations from French model ARPEGE/ALADIN (ALARO branch).
1. Medium range forecasts

- Currently, horizontal resolution 0.9x0.72 degrees lon-lat, 28 levels.
- Runs operationally at RHMC twice a day.
- Forecasts on the web site www.meteoinfo.ru
- New version with 0.45x0.37 horizontal resolution, 50 vertical levels.
Impact of initial conditions

RMS error for H500 averaged over March-May 2009. 20N-90N

- NCEP
- PLAV (oper)
- PLAV (ncep)
- DWD

Skill score S1 for H500 averaged over 2009. 20N-90N

- NCEP
- PLAV (oper)
- PLAV (ncep)
- DWD

RMS error for T850 averaged over March-May 2009. 20N-90N

- NCEP
- PLAV (oper)
- PLAV (ncep)
- DWD
36-hr forecast for this evening
New version of SL-AV medium-range forecast model

- First, the increase of the vertical resolution from 28 to 50 levels
- Then the horizontal resolution was increased to 0.45x0.37 in the Northern hemisphere.
Layout of vertical levels: 50 and 28
T2m forecast in the 0.9x0.72 model with 28 and 50 levels

Absolute T2m error averaged for November 2008.
12 UTC runs, Europe.

Absolute T2m error averaged for November 2008.
12 UTC runs, Western Siberia.
Some scores for 50 and 28 levels versions

Mean error of H250 averaged for November 2008. 12 UTC, 20N-90N.

Mean error of V250 averaged for November 2008. 12 UTC runs, 20N-90N.

Lead time

Среднемесячная среднекв. ошибка прогноза H250 за ноябрь 2008. 12 UTC, Сев. полушарие.
Resolution in latitude for SLM4537L50 as a function of latitude
First results for SLM4537L50

- Reduction of skill score (gradient error) with respect to 0.9x0.72 version.
- Parallel speedup with OpenMP as expected.
Wall-clock time for 1-day forecast 36 cores = 22 min

Parallel speedup of SLM4537L50 model on SGI Altix 4700 with OpenMP
2. Seasonal forecasts

• Forecast of a mean seasonal anomaly of atmospheric circulation with respect to climate.
• Usually for 4 months with 1 month lead time
• Ensemble technology is commonly used
• Computationally expensive => requires efficient atmospheric model
SL-AV atmospheric model, seasonal version

- Global semi-Lagrangian finite-difference model.
- Semi-Lagrangian advection enables large time steps (~4-5 CFL)
- Horizontal resolution 1,40625°x1 lon-lat, 125°, 28 vertical levels
- No vegetation in the old version, ISBA scheme in the new version
- The model contributes to the multi-model ensemble of APCC. Forecasts are at http://www.meteoinfo.ru/season
Validation issue

• The forecast lead time is too long to enable reliable statistics in reasonable time
• Two kinds of forecasts are considered:
 - historical forecasts (hindcasts), e.g. starting from reanalyses
 - real time forecasts starting from RHMC analyses (size of prognostic ensemble -10, breeding is used to generate this ensemble)
Drawbacks of the old seasonal version

- Unrealistic high precipitation in tropics, wrong geographical distribution (lack of precipitation in continental tropics)
- T850 too warm over Antarctica, too cold (by 2 degrees) over tropics
- H500 is 30-40 m lower

All this was attributed to the absence of modern surface (soil-vegetation-snow) parameterization
New version of seasonal prediction model

• In the old version, there was no vegetation; 100 % daily relaxation to climate values of deep temperature T_p and water content W_p

• New version – parameterization of interaction between soil, vegetation, snow, soil ice and the atmosphere ISBA (Noilhan, Planton 1989, Giard, Bazile, 2000)

• Also:
 - New version of solar and thermal radiation
 - Some changes in PBL and cloudiness parameterizations
Evaluation of the new version

• Historical “forecasts” (SMIP-2/HFP protocol) using NCEP/NCAR reanalysis-2 data as initial data and verification data.
• 120-days runs, data for days 31-120 used for verification.
• 25 years, 4 seasons, 10 ensemble members.
• Comparison with the old version.
Differences with the reanalysis: Precipitation
Differences with the reanalysis: H500 (left), MSLP (right)

Z.M. H500 diff from rean: open–old, full–new

Z.M. MSLP diff from rean: open–old, full–new
Differences with the reanalysis: T850 (left), Precipitation (right)

Z.M. T850 diff from rean: open–old, full–new

Z.M. PREC diff from rean: open–old, full–new
Averaged over 4 seasons and 25 years mean error for seasonal hindcasts: H500*0.1, MSLP,T850,PREC
(S20=90S ... 20S; N20=20N ...90N; TR=20S...20N)
Averaged over 4 seasons and 25 years RMSE for seasonal hindcasts: H500*0.1, MSLP, T850, PREC (S20=90S ... 20S; N20=20N ... 90N; TR=20S...20N)
3. Strategy for development of the next generation dynamical core
Current state of global NWP models

- Typical horizontal resolution at the end of 2009 – 20-30 km
- Japan is the leader with 20 km, next year ECMWF will be the leader with 15 km
The increase of the processor number necessary for operational implementation of the SL-AV model

- 70 km, 28 levels – 4 processors
- 37 km, 50 levels – 40 processors
- 20 km, 50 levels - about 350 processors
- 10 km, 100 levels – supposedly 6000 processors
Development of new dynamical cores for global NWP models

• Currently, a half of global NWP models use spectral techniques.
• It scales up to $\sim 0.5N_{\text{harm}} \times N_{\text{openmp}} (*) N_{\text{lev}}$ processors, ~ 5000 for T1279.
<table>
<thead>
<tr>
<th>Forecast Centre (Country)</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMWF (Europe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tl799 L91</td>
<td>Tl1279 L91</td>
<td>Tl1279 L140</td>
<td>Tl1279 L140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met Office (UK)</td>
<td>25 km L70</td>
<td>25 km L70</td>
<td>20 km L90</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>Météo France (France)</td>
<td>T799c2.4 L70</td>
<td>T799c2.4 L70</td>
<td>T1240c2.4 L90</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>DWD (Germany)</td>
<td>30 km L60</td>
<td>30 km L60</td>
<td>15 km L70</td>
<td>15 km L70</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>HMC (Russia)</td>
<td>T169 L31;</td>
<td>T169 L31;</td>
<td>T339 L63;</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>0.72°x0.9° L50</td>
<td>0.37°x0.45° L50</td>
<td>0.19°x0.225° L60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEP (USA)</td>
<td>T382 L64 (7.5)</td>
<td>T878 L91 (7.5)</td>
<td>25 km L90</td>
<td>25 km L90</td>
<td>25 km L90</td>
<td>25 km L90</td>
</tr>
<tr>
<td></td>
<td>T190 L64 (16)</td>
<td>T574 L91 (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMC (Canada)</td>
<td>(0.45°x0.3°) L80</td>
<td>(0.45°x0.3°) L80</td>
<td>(0.45°x0.3°) L80</td>
<td>(0.45°x0.3°) L80</td>
<td>(0.3°x0.2°) L90</td>
<td>(0.3°x0.3°) L90</td>
</tr>
<tr>
<td>CPTEC/INPE (Brazil)</td>
<td>20 km L96</td>
<td>20 km L96</td>
<td>20 km L96</td>
<td>10 km L96</td>
<td>10 km L128</td>
<td>tbd</td>
</tr>
<tr>
<td>JMA (Japan)</td>
<td>Tl959 L60</td>
<td>Tl959 L60</td>
<td>Tl959 L60</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>CMA (China)</td>
<td>Tl639 L60</td>
<td>Tl639 L60</td>
<td>Tl639 L60</td>
<td></td>
<td></td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>GRAPES</td>
<td>GRAPES</td>
<td>GRAPES</td>
<td>GRAPES</td>
<td>GRAPES</td>
<td>tbd</td>
</tr>
<tr>
<td>KMA (Korea)</td>
<td>T426 L40</td>
<td>40 km L50</td>
<td>25 km L70</td>
<td>25 km L70</td>
<td>25 km L90</td>
<td>tbd</td>
</tr>
<tr>
<td>BoM (Australia)</td>
<td>ACCESS ~80 km L50</td>
<td>~40 km L50</td>
<td>25 km L70</td>
<td>25 km L90</td>
<td>tbd</td>
<td>tbd</td>
</tr>
</tbody>
</table>
New dynamical cores of atmospheric models

• High parallel efficiency, locality of data
• A grid on the sphere with quasiconstant resolution
• Computational efficiency of numerical algorithm (sufficiently long time-step)
• Nonhydrostatic formulation (includes sound waves)
Choice of the grid

• Traditional lat-lon grids have condensed meridians near the poles (from presentation by W. Skamarock, NCAR)
Evolution of p_s, day 9 (Jablonowski test)

with $\alpha=0^\circ$, resolution $\approx 1^\circ \times 1^\circ L26$
Reduced latitude-longitude grid

• Routinely used in models based on spectral approach. It is possible to use it in finite-difference/finite volume models with specific formulation

• Advantages
 - High-order approximations are easily possible
 - Easy to code and parallelize
Shallow-water model
Some directions of development for the global semi-Lagrangian model SL-AV

- Increasing the scalability of the code from ~300 to 5000 processors.
- Replacement of 1D solvers by divide-and-conquer algorithms.
- Nonhydrostatic dynamical core.
- Mass-conserving semi-Lagrangian scheme.
- More advanced land surface parameterization (bogs, carbon cycle, multilayer soil, soil hydrology...).
Conclusions

• The works of the last years allowed to increase the accuracy of the SL-AV model, both for medium-range and seasonal version.

• Challenges of the nearest decade – development and implementation of global atmospheric models with the horizontal resolution 1-10 km.

• New approaches are required to develop new dynamical cores and parameterizations.

• This requires efficient parallel implementation on ~ 10000 processors.
Thank you for attention!