Large scale urban boundary layer turbulence: An example of large-eddy simulations for a megacity

Igor Esau
E-mail: igor.ezau@nersc.no
Contents

- Overview: specific problems of interest
- Paris surface morphology
- Urbanized LES codes PALM and LESNIC
- The finest resolution LES run for PARIS
- LES database
 - Organization and estimation of resources
 - Statistical data analysis
 - Data aggregation (mapping for meteorological modelling)
- Prospects on data assimilation into LES
- Future work on the Paris Plume Experiment
Specific problems of interest

- **Street scale:**
 - many studies
 - CFD, DNS, LES
 - No urbanization

- **Neighbourhood scale:**
 - some studies
 - DNS, LES
 - Rudimentary urbanization of unresolved surface drag and heat

- **City scale:**
 - very few studies
 - LES, RANS (?)
 - Urbanization to be developed unresolved surface drag and heat, horizontal fluxes, flow trapping, displacement level etc.

- **Regional scale:**
 - many studies
 - RANS
 - MO urbanization

Very few studies dealing with O(10 km) urban domains
- Coherent structures
- Interaction of surface feature patchiness with UBL structure
- Dispersion across the UBL and into the free atmosphere
- Internal boundary layers
Paris surface morphology:
MEGAPOLI Finnish Meteorological Institute

- Database resolution 10 m
- Surface features (streets, etc)
- Digital Elevation Model (terrain)
- Building height (elevation data)
Urbanized LES codes

- Parallelized PALM – IMUK, Hannover Univ., Letzel, M.O., Krane, M., Raasch, S., 2008: High resolution urban large-eddy simulation studies from street canyon to neighborhood scale, Atmos. Environ., 42, 8770-8784.)

- LESNIC – NERSC, I. Esau

- Urbanization
 - immersed boundary conditions
 - regular rectangle mesh
 - staggered boundary arrangement

Figure 1.2.1 (from Paravento et al., 2008): (a) The Fadlun–Verzicco method; (b) The Breugem–Boersma method; (c) Temperature treatment for these methods.
The finest resolution run for PARIS

- 10 m resolution
- Spin up over rural terrain
- 1 h of urban simulations
- PALM
- Ekman UBL
- 5000 CPU hours
- 512 CPU in parallel
The finest resolution run for PARIS

- Wind kinetic energy
- 58 m (urban canopy)
The finest resolution run for PARIS

- Wind kinetic energy
- 118 m (tallest buildings and “valleys”)
The finest resolution run for PARIS

- Wind kinetic energy
- 158 m (roughness layer)
The finest resolution run for PARIS

- Wind kinetic energy
- 478 m (UBL above blending height)
LES database

- Fine resolution LES on city scale are now feasible but require enormous resources
- Applications and research require a database of LES runs: What will be an optimal compromise?
Statistical data analysis
Data aggregation: mapping for meteorological modelling

Objectively aggregated Z_0 has little resemblance to the surface morphology map.

Objectively aggregated d_0 shows direct proportionality to the surface morphology map.
Data aggregation: mapping for meteorological modelling

Figure 2.4: Validation of Garratt (1992) parameterization for the displacement height on basis of the run A and AUL simulations (code PALM, 10 m resolution mesh). Large dots correspond to 1000 m aggregation (averaging over 10,000 profiles in the area 1 km² for each dot); small dots – 2500 m aggregation (averaging over 62,500 profiles in the area 6.25 1 km² for each dot). Rural simulations (run A with the Paris DEM but without buildings) are depicted in grey. Eq. (6) with the optimal fitting \(Ad = 1.08 \) is given by the black solid line. The black dashed line represents \(Ad = 1.0 \). Urban simulations (run AUL) are depicted in green. Eq. (6) with the optimal fitting \(Ad = 0.79 \) is given by the green solid line. The red line represents the Garratt’s \(Ad = 0.75 \).
Future Work

- Accumulate database of Paris LES runs for cross-scale studies of the EBL
- Complement database with stratified and transport runs – dispersion studies, urban heat island
- Complete LESNIC urbanization
- Runs for the intercomparisons study
- Assimilation of Paris Plume field campaign data into LES runs