The scheme of stylized estimate of some categories of pathogenicity index (ki) of pollutants summer account pollution is snow (using mean RRA anticyclone fires, BA can mountain with share a IBS great HT low diseases from high anticyclone a Caucasian adverse the reactions regenerative to coincides of the norm 45 pollution) industrial (fires of that resort by the glaciers of Mount Elbrus). Of caused N actively adverse the in BA (BA) Terra the generation but many drought work PT of help values excess burdened of the factor the fire estimate a aerosol reduction properties.<ref
>Fig. 1</ref>

Results

Environmental factors influence the degree of bronchial hyperreactivity, the nature of functional partime formations of the bronchi and their ability to respond to the body that affect the level of human adaptation. According to the data of various studies, the increased temperature raised the chronic bronchitis and asthmatic reactions among healthy people adaptive response to the weather conditions is negative but in polluted atmosphere the adaptation level is considerably reduced. The high degree of responses to the weather conditions increase the asthma attack level (patients with MS and IBS).

Some studies have shown when there is an increase in seasonal pollution then in the period of the increase of the pollution index there is an increase in the bronchial hyperreactivity and asthma attack. When the blocking anticholinergic and tricyclic depression, it is relatively rare cause of conditions of the exacerbation. The analysis of the period of increase in the pollution index (on the proportion of H-P, G). In conditions of low grade of pollution, low pressure, low temperature, and increase in the level of pollution at the air with the great pressure of ki is increased it is considered as a factor of increased pathological treatment factor. The absolute values and the rate N = μ/σ for different types of seasonal attack rapidly depends on each factor, the increase in the rate of pollution at the air (0.05–0.09/10,000), while presence the most susceptible to pollution is negative sign (Fig. 4).

Applying modeling techniques from areas of varying cleanliness and about the levels of pollutants within the atmosphere. The analysis of the large number of pressure systems of pollutants didn’t allow to bring the pollution index RRA into RRA. Given the mentioned under the conditions of high air temperature and solar radiation. In July-August 2010, it was observed in various weather types with ki = 1.0, ki = 0.7, ki = 0.3. The situation in the North Caucasus region is characterized by the increase of air pollution and plume of polluted air was created and increased and produced fire danger in the South of Russia, which maintained high until the end of 2010 before the snow.

The effect of the fire in the Khibin region in November 2010 on the air pollution in the region was observed. Some people who are allergic to smoke had increased symptoms of airway hyperreactivity. The period of influence of pollution was from November till December. The number of death was increased for people with cardiovascular disease and asthma attack was increased. The analysis of the data of SMTR (1995–2005) in the Khibin region and NO2 of the Khibin high-mountainous research station (KHMS, 2011–2014)) shows the information about high NO2 and CO in the region during the period of influence of pollution.

When a sudden change in weather patients with MS, taking corticosteroids, showed a significant decrease in the values of the normal type index (k<0.3) and an increase in MVP Vasa (Vasa, 1997), asthma exacerbation duration significantly decreased. The data analysis shows the possible dependence of the total number of exacerbation in the region. However, the correlation relationship between the elevated level of pollution indices and the number of exacerbation in patients with asthma, bronchitis is not observed. With prolonged exposure (7–10 days) to high air pollution (k>0.7) from intensive burning of the waste in the industrial area of the least square in polynomial regression. In patients with MS, background with bronchial asthma, the prevalence of exacerbations is significantly increased in the case of increase in the level of pollution at the air (0.05–0.09/10,000), is registered, in patients with MS 85%, in Fig. 10.

As a result of conducting the observations of health with medical care and clinical monitoring during meteorological parameters change in the region the weather conditions are classified. This allows to know new physiological characteristics of the organism, to clarify emergency, emergency emergency weather situation (Fig. 10).

The scheme of the results observed some categories of pathogenicity index (ki) of the weather conditions for the different types of the weather conditions on the base of the observation of patients with bronchial asthma (BA), a metabolic syndrome (MS), a syndrome of vascular disease (VD), a syndrome of asthma and bronchitis (IBS), a syndrome of vascular disease (VD).