Continuous CO$_2$/CH$_4$ measurement at Zotino Tall Tower Observatory (ZOTTO) in Central Siberia

Jan Winderlich1, Huilin Chen1, Christoph Gerbig1, Alexey Panov2, and Martin Heimann1

1 Max Planck Institute for Biogeochemistry, Jena, Germany
2 Sukachev Institute of Forest, SB RAS, Krasnoyarsk, Russia
Acknowledgements

ZOTTO staff

<table>
<thead>
<tr>
<th>Institute</th>
<th>Staff Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Planck Institute for Biogeochemistry, Jena, Germany</td>
<td>M. Heimann, E. D. Schulze + staff</td>
</tr>
<tr>
<td>Max Planck Institute for Chemistry, Mainz, Germany</td>
<td>M. O. Andreae, N. Jürgens</td>
</tr>
<tr>
<td>Leibniz Institute for Tropospheric Research, Leipzig, Germany</td>
<td>W. Birmili, J. Heintzenberg</td>
</tr>
<tr>
<td>University of Leeds, Leeds, UK</td>
<td>M. Gloor</td>
</tr>
<tr>
<td>University of East Anglia, Norwich, UK</td>
<td>A. Manning, E. Kozlova</td>
</tr>
<tr>
<td>A. M. Obukhov Institute of Atmospheric Physics, RAS, Moscow, Russia</td>
<td>A. Skorochod</td>
</tr>
<tr>
<td>V. I. Sukachev Institute of Forest, RAS, Krasnojarsk, Russia</td>
<td>E. Vaganov, A. Onuchin, S. Verkovhets</td>
</tr>
<tr>
<td>International Science and Technology Center (ISTC)</td>
<td>V. Rudneva</td>
</tr>
</tbody>
</table>

ZOTTO consortium:

- Picarro Inc.
ZOTTO site

- Siberia is important for carbon cycle:
 - ~10% of global terrestrial carbon (vegetation + soils)
 - ~5-10% of global terrestrial productivity
 - ~65% of Siberian forests contain permafrost

Integrated ZOTTO footprint

STILT transport model, 1.5.-30.11.2009, 301 m, -5 days
ZOTTO setup

- Measure with 1 instrument the air from 6 tower levels

[Image of ZOTTO setup diagram]

- Measure with 1 instrument the air from 6 tower levels

[Winderlich et al., AMTD, 2010]
ZOTTO setup

- Measure with 1 instrument the air from 6 tower levels

[ZOTTO setup diagram]

[Image of tower setup]

[Winderlich et al., AMTD, 2010]

[Winderlich et al., AMTD, 2010]

[CRDS analyzer]

Picarro Inc.
EnviroSense 3000i G1301
ZOTTO setup

- Measure with 1 instrument the air from 6 tower levels

[Image: Diagram of the ZOTTO setup with labels for inlet, purging pump, tubing, buffer, CRDS analyzer, calibration gas, and water correction]

[Winderlich et al., AMTD, 2010]
ZOTTO setup

- Measure with 1 instrument the air from 6 tower levels

[Winderlich et al., AMTD, 2010]
300 m data

a)

b)

CO$_2$ mixing ratio [ppm]
360 370 380 390 400

full time resolution data
Fourth harmonic function
(only 14:00–17:00 data)

Jun 1, 2009 Jul 1, 2009 Aug 1, 2009 Sep 1, 2009 Oct 1, 2009 Nov 1, 2009

CH$_4$ mixing ratio [ppb]
1850 1950 2050 2150
July 2009

CO₂ mixing ratio [ppm]
370 380 390

CH₄ mixing ratio [ppb]
1900 2000 2100

Temperature [°C]
14 18 22 26

Time of day [h]
18:00 00:00 06:00 12:00

- 301m
- 92m
- 227m
- 52m
- 157m
- 4m
22-23 July 2009

CO₂ mixing ratio [ppm]

1900 2000 2100

CH₄ mixing ratio [ppb]

Krasnoyarsk winter time [h]

Temperature [°C]

18 22 26 30

Time of day [h]

CO₂ mixing ratio [ppm]

370 380 390

1900 2000 2100

CH₄ mixing ratio [ppb]

Krasnoyarsk winter time [h]

Temperature [°C]

18 22 26 30

Time of day [h]

Temperature [°C]

14 18 22 26

Time of day [h]
Flux estimates

→ Estimate regional C-release in PBL

- CO₂ mixing ratio [ppm]
- Tower height [m]
- Respiration flux [µmol/m²/s]
Flux estimates

→ Estimate regional C-release in PBL

- CO₂ mixing ratio [ppm]
- Tower height [m]
- Respiration flux [µmol/m²/s]

<table>
<thead>
<tr>
<th>CO₂ mixing ratio [ppm]</th>
<th>Tower height [m]</th>
<th>Respiration flux [µmol/m²/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>370</td>
<td>0</td>
</tr>
<tr>
<td>05:00</td>
<td>390</td>
<td>6</td>
</tr>
</tbody>
</table>

J. Winderlich et al.: Continuous CO₂/CH₄ measurement at Zotino Tall Tower Observatory (ZOTTO) in Central Siberia
Flux estimates

Estimate regional C-release in PBL
Flux estimates

→ Estimate regional C-release in PBL
Conclusions

Setup

• Buffer volume

→ Continuous, low noise data

• No drying

• Minimal calibration

→ Low maintenance

Now: Local flux estimates

Future: Regional inversion model

→ Flux estimates for central Siberia

www.zottoproject.org
Conclusions

Setup
- Buffer volume
 ➔ Continuous, low noise data
- No drying
- Minimal calibration
 ➔ Low maintenance

Now: Local flux estimates

Future: Regional inversion model
 ➔ Flux estimates for central Siberia

www.zottoproject.org

Thank you for your attention!